45 research outputs found

    Effect of Vaccines and Antivirals during the Major 2009 A(H1N1) Pandemic Wave in Norway – And the Influence of Vaccination Timing

    Get PDF
    To evaluate the impact of mass vaccination with adjuvanted vaccines (eventually 40% population coverage) and antivirals during the 2009 influenza pandemic in Norway, we fitted an age-structured SEIR model using data on vaccinations and sales of antivirals in 2009/10 in Norway to Norwegian ILI surveillance data from 5 October 2009 to 4 January 2010. We estimate a clinical attack rate of approximately 30% (28.7–29.8%), with highest disease rates among children 0–14 years (43–44%). Vaccination started in week 43 and came too late to have a strong influence on the pandemic in Norway. Our results indicate that the countermeasures prevented approximately 11–12% of potential cases relative to an unmitigated pandemic. Vaccination was found responsible for roughly 3 in 4 of the avoided infections. An estimated 50% reduction in the clinical attack rate would have resulted from vaccination alone, had the campaign started 6 weeks earlier. Had vaccination been prioritized for children first, the intervention should have commenced approximately 5 weeks earlier in order to achieve the same 50% reduction. In comparison, we estimate that a non-adjuvanted vaccination program should have started 8 weeks earlier to lower the clinical attack rate by 50%

    Repetitive Immunization Enhances the Susceptibility of Mice to Peripherally Administered Prions

    Get PDF
    The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease

    Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature

    Full text link

    Increased Abundance of M cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    Get PDF
    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

    Quantifying spatiotemporal heterogeneity of MERS-CoV transmission in the Middle East region: A combined modelling approach

    No full text
    MERS coronavirus cases notified in the Middle East region since the identification of the virus in 2012 have displayed variations in time and across geography. Through a combined modelling approach, we estimate the rates of generation of cases along the zoonotic and human-to-human transmission routes and assess their spatiotemporal heterogeneity. We consider all cases notified to WHO from March 2012 to mid-September 2014. We use a stochastic modelling of the time series of case incidence in the Middle East region to estimate time- and space-dependent zoonotic and human-to-human transmission parameters. The model also accounts for possible lack of identification of secondary transmissions among notified cases. This approach is combined with the analysis of imported cases out of the region to assess the rate of underreporting of cases. Out of a total of 32 possible models, based on different parameterisation and scenario considered, the best-fit model is characterised by a large heterogeneity in time and across space for both zoonotic and human-to-human transmission. The variation in time that occurred during Spring 2014 led to a 17-fold and 3-fold increase in the two transmissions, respectively, bringing the reproductive rate to values above 1 during that period for all regions under study. The model suggests that 75% of MERS-CoV cases are secondary cases (human-to-human transmission), which is substantially higher than the 34% of reported cases with an epidemiological link to another case. Overall, estimated reporting rate is 0.26. Our findings show a higher level of spatial heterogeneity in zoonotic transmission compared to human-to-human, highlighting the strong environmental component of the epidemic. Since sporadic introductions are predicted to be a small proportion of notified cases and are responsible for triggering secondary transmissions, a more comprehensive understanding of zoonotic source and path of transmission could be critical to limit the epidemic spread

    A comparative analysis of Chikungunya and Zika transmission

    No full text
    The recent global dissemination of Chikungunya and Zika has fostered public health concern worldwide. To better understand the drivers of transmission of these two arboviral diseases, we propose a joint analysis of Chikungunya and Zika epidemics in the same territories, taking into account the common epidemiological features of the epidemics: transmitted by the same vector, in the same environments, and observed by the same surveillance systems. We analyse eighteen outbreaks in French Polynesia and the French West Indies using a hierarchical time-dependent SIR model accounting for the effect of virus, location and weather on transmission, and based on a disease specific serial interval. We show that Chikungunya and Zika have similar transmission potential in the same territories (transmissibility ratio between Zika and Chikungunya of 1.04 [95% credible interval: 0.97; 1.13]), but that detection and reporting rates were different (around 19% for Zika and 40% for Chikungunya). Temperature variations between 22 °C and 29 °C did not alter transmission, but increased precipitation showed a dual effect, first reducing transmission after a two-week delay, then increasing it around five weeks later. The present study provides valuable information for risk assessment and introduces a modelling framework for the comparative analysis of arboviral infections that can be extended to other viruses and territories
    corecore